Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass.
نویسندگان
چکیده
Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24%), associated with increased nucleolar number (from 1-2 to 3-5) within a myonucleus and myonuclear domain (+27%) compared with the preexperimental level, was induced by synergist ablation. Such phenomena were associated with increased levels of phosphorylated S6 (+84%) and HSP27 (+28%). Fiber atrophy (-52%), associated with decreased number (-31%) and domain size (-28%) of myonuclei and phosphorylation of S6 (-98%) and HSP27 (-63%), and with increased myonuclear size (+19%) and ubiquitination of myosin heavy chain (+33%, P > 0.05), was observed after unloading, which inhibited the mechanical load. Responses to deafferentation, which inhibited electromyogram level (-47%), were basically similar to those caused by hindlimb unloading, although the magnitudes were minor. The deafferentation-related responses were prevented and nucleolar number was even increased (+18%) by addition of synergist ablation, even though the integrated electromyogram level was still 30% less than controls. It is suggested that the load-dependent maintenance or upregulation of the nucleolar number and/or phosphorylation of S6 and HSP27 plays the important role(s) in the regulation of muscle mass. It was also indicated that such regulation was not necessarily associated with the neural activity.
منابع مشابه
Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice.
The p90 ribosomal S6 kinase (RSK), a cytosolic substrate for the extracellular signal-regulated kinase (ERK), is involved in transcriptional regulation, and one isoform (RSK2) has been implicated in the activation of glycogen synthase by insulin. To determine RSK2 function in vivo, mice lacking a functional rsk2 gene were generated and studied in response to insulin and exercise, two potent sti...
متن کاملTransient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heat-shocked cells.
We have investigated the phosphorylation of HSP27, a 27-kDa heat shock protein which is involved in cellular thermoresistance and is also an early target of phosphorylation during heat shock and cell stimulation by a variety of growth and differentiation factors. HSP27 is transiently phosphorylated after shifting Chinese hamster cells from their normal temperature of 37 to 44 degrees C. The pho...
متن کاملStimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice.
Knocking out myostatin activity during development increases the rate of muscle protein synthesis. The present study was done to determine whether postdevelopmental loss of myostatin activity stimulates myofibrillar protein synthesis and the phosphorylation of some of the proteins involved in regulation of protein synthesis rate. Myostatin activity was inhibited for 4 days, in 4- to 5-mo-old ma...
متن کاملThe Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action
Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...
متن کاملMice Deficient in Ribosomal Protein S6 Phosphorylation Suffer from Muscle Weakness that Reflects a Growth Defect and Energy Deficit
BACKGROUND Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-)), are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007